您的位置:首页 > 资讯 > 无人汽车 > 行业资讯 > 正文

如何设计一款无人搬运车?

2019-08-13 15:05 性质:转载 来源:新机器视觉
免责声明:无人系统网(www.youuvs.com)尊重合法版权,反对侵权盗版。(凡是我网所转载之文章,文中所有文字内容和图片视频之知识产权均系原作者和机构所有。文章内容观点,与本网无关。如有需要删除,敬请来电商榷!)

  无人搬运车(Automated Guided Vehicle,AGV),也叫做自动导引运输车,是指装备有电磁或光学传感器装置,能够沿规定好的路径行驶,具有安全保护以及各种移载功能的运输车。

  传统的工厂和仓库中的货物搬运需要大量人力,效率低下,容易出错。货物储存位置、不同货物大小和重量,对机器和人都是一种挑战。

  目前国内自动导引车普遍使用在地面上的标线对小车进行导航,或者在规定区域的地面,贴上标志图形,其缺点在于需要在地面上铺设大量标志线和图形,其活动范围受到限制,且标志线被污染容易造成导航精度降低甚至失效的后果。或者采用全局摄像头定位小车在室内的位置,其缺点是定位精度差,成本高。

  在AGV的相关技术研究中,导航技术是其核心技术,也是其实现真正的智能化和完全的自主移动的关键技术。导航研究的目标是在没有人工干预的情况下使机器人有目的地移动并完成特定任务。而路径轨迹计算又是导航的核心技术之一,只有知道了机器人自身移动的轨迹,才能完成导航任务。

  本文利用机器视觉技术检测地面,使用块匹配算法计算AGV轨迹。其优点是无需在地面铺设大量标志线和图形,精度高,成本低。在运行较长轨迹后,只需用极少坐标作为误差矫正即可完成AGV的长期导航任务。

  1 直线行驶图像匹配

  图像匹配是通过计算相似性度量来判断图像间的变换参数,从不同传感器、不同方位、不同时间采集同一场景的2幅或多幅图像,将其变换到同一坐标系下,并在像素层上实现最佳匹配的效果。图像匹配的方法可以划分为4类:基于灰度的匹配、基于模板的匹配、基于变换域的匹配和基于特征的匹配。

  本文利用CCD拍摄地面,从地面的图像的移动来判断小车移动的距离,由于地面特征变化很多,特征有时明显有时不明显,所以采用基于模板的匹配的方法来计算小车移动的距离,简单实用。

  1.1 基于模板的匹配

  基于模板的匹配是在图像已知的重叠区域里选择一块矩形区域作为模板,与扫描被匹配图像中同样大小的区域进行对比,计算其相似性度量,确定最佳的匹配位置,所以此方法也被称为块匹配过程。其匹配过程包括4个步骤,如图1所示。

  图1 基于模板的匹配算法流程图

  1.2 基于块匹配过程

  CCD摄像头拍摄地面,以帧的方式传输到处理器中,图2是相邻2帧可能的相对位置情况。

  图2 相邻2帧相对位置情况

  如图3所示,假设每2帧的图像有部分重叠,重叠部分用阴影表示,此重叠区域即为块匹配的基准模板,相邻2帧重叠区域与前一帧图像面积的比值定义为重叠系数β。

  图3相邻2帧图像重叠的位置情况

  模板的大小和坐标定义如下:前一帧的坐标系是x - y,每一像素点的灰度值为f(x,y),后一帧的坐标系是X - Y,每一像素点的灰度值为g(X,Y),坐标系变换是x = X + ΔX,y = Y + ΔY。

  重叠区域S的比对采用差值法,重叠区域相似性度量计算公式如下:

  模板扫描策略从β ~ 1,每次扫描都会有一个A值,取所有A值中的最小值:min(A1,A2,A3,…)

  此时的ΔX是AGV在2帧时间内行驶前进方向的路程,ΔY是AGV行驶方向的垂直方向的偏移。在时间t内前进方向行驶的距离为∑ΔX,垂直方向为∑ΔY。

  1.3 CCD摄像头与AGV移动速度关系

  CCD摄像头拍摄面积、传输帧数与AGV行驶速度之间的关系如下:

上一页1234

网友评论
文明上网,理性发言,拒绝广告

相关资讯

热点资讯
推荐图文

关注官方微信

手机扫码看新闻